C	Question		Answer	Marks	Guidance
1	(a)	(i)	5 mol/molecules (of gas) forms 3 mol/molecules (of gas) ✓	1	ALLOW reaction forms fewer moles/molecules IF stated, numbers of molecules MUST be correct IGNORE comments related to ΔG OR disorder (even if wrong)
	(a)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer =(+)131 (J K ⁻¹ mol ⁻¹) , award 2 marks		
			$-164 = (186 + 2 \times 206) - (4 \times S + 238)$ OR $4 S = 164 + (186 + 2 \times 206) - 238 \checkmark$ $S = (+)131 (J K^{-1} mol^{-1}) \checkmark$	2	NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. –164 may be missing ALLOW FOR 1 mark –131 wrong final sign 49 wrong sign for 164 79.5 no use of 2 524 no division by 4 38 wrong sign for 186 –75 wrong sign for 206 250 wrong sign for 238 Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g.146 for 164

Questi	on	Answer	Marks	Guidance
(a)	(iii)	NOTE: DO NOT ALLOW answer to 3(a)(ii) for $\triangle G$ calculation $\triangle G$ calculation: 2 marks $\triangle G = -234 - 298 \times -0.164 \checkmark$ $= -185 (kJ mol^{-1}) \checkmark$ IGNORE units (even if wrong) -185 subsumes 1st mark)	2	ALLOW $\triangle G$ correctly calculated from 3 SF up to calculator value of -185.128 ALLOW working in J, <i>ie</i> : $\triangle G = -234000 - 298 \times -164 \checkmark$ $= -185000 \text{ (J mol}^{-1}) \checkmark$ ALLOW 1 mark for use of 25 OR mixture of kJ and J, e.g. $\triangle G = -234 - 25 \times -0.164 = -229.9$ $\triangle G = -234 - 298 \times -164 = +48638$
		Feasibility comment for negative ΔG answer: 1 mark (Forward) reaction is feasible / spontaneous AND $\Delta G < 0 / \Delta H - T\Delta S < 0 \checkmark$	1	ALLOW ECF if calculated value for ΔG is +ve Then 'correct' response for 3rd mark would be not feasible/not spontaneous AND $\Delta G > 0 / \Delta H - T\Delta S > 0$
(a)	(iv)	$(\Delta G =) -234 - 1427 \times \frac{-164}{1000} = 0$ (calculator 0.028(kJ) OR 28 (J)) ✓ 2 nd mark only available if 1 st mark has been awarded (Above 1427K/1154°C), reaction is not feasible/ not spontaneous ✓ OR 1427 K is maximum temperature that reaction happens	2	ALLOW (When $\Delta G = 0$) $T = \frac{-234}{-0.164} = 1427 \text{ K OR } \frac{-234000}{-164} = 1427 \text{ K}$ For 2nd mark, IF ΔG is +ve from (a)(iii) ALLOW ECF for: Above 1427 K, reaction is feasible / spontaneous OR 1427 K is minimum temperature that reaction happens IGNORE LESS feasible
				IGNORE comparisons of the signs of $T\Delta S$ and ΔH , e.g IGNORE $T\Delta S$ is more negative than ΔH

Ques	stion	Answer	Marks	Guidance
	stion o) (i)		Marks	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF from incorrect moles of SO ₂ , O ₂ AND SO ₂ ALL three concentrations required for this mark ALLOW ECF from incorrect concentrations
		$ \mathcal{H}_{c} = \frac{1}{[SO_{2}]^{2} [O_{2}]} \text{ OK } \frac{1}{(0.720)^{2} \times (0.360)} \\ = 57.6 \checkmark dm^{3} mol^{-1} \checkmark \\ At least 3SF is required $	6	NO ECF for numerical value with a square missing For K_c , ALLOW 3 significant figures up to calculator value of 57.64746228 correctly rounded For units, ALLOW mol ⁻¹ dm ³ DO NOT ALLOW dm ³ /mol ALLOW ECF from incorrect K_c expression for both calculation and units COMMON ERRORS 0.0294 3 marks + units mark from SO ₂ = 0.820, O ₂ = 0.410, SO ₃ = 0.180 (mol)
(k	o) (ii	(Pressure) decreases AND fewer molecules/moles ✓	1	For fewer moles, ALLOW 3 mol \rightarrow 2 mol ALLOW more moles of reactants

Question	n	Answer	Marks	Guidance	
(b) (i	iii)	ΔH is negative / '- ' / -ve AND yield of SO ₃ decreases \checkmark	1	IGNORE exothermic and endothermic	
(b) (i	iv)	IGNORE le Chatelier responses		FULL ANNOTATIONS NEEDED	
		Each marking point is independent			
		K_c K _c does not change (with pressure/ concentration) \checkmark		ALLOW K_c only changes with temperature IF 1 st marking point has been awarded, IGNORE comments about ' K_c decreasing' or ' K_c increasing' and assume that this refers to how the ratio subsequently changes. i.e DO NOT CON 1 st marking point.	
		Comparison of conc terms with more O_2 [O_2]/concentration of oxygen is greater OR denominator/bottom of K_c expression is greater \checkmark		IGNORE O_2 is greater/increases	
		QWC: yield of SO₃ linked to K _c (Yield of) SO ₃ is greater/increases AND numerator/top of K_c expression is greater/increases \checkmark	3	ALLOW (Yield of) SO ₃ is greater/increases AND to reach/restore K_c value \checkmark	
		Total	19		

(Quest	ion	Answer	Marks	Guidance
2	(a)	(i)	(entropy) decreases AND (solid/ice has) less disorder/ more order/ fewer ways of arranging energy/ less freedom/ less random molecules ✓	1	ORA decreases and reason required for mark ASSUME change is for freezing of water unless otherwise stated DO NOT ALLOW atoms are more ordered
	(a)	(ii)	(entropy) increases AND (CO ₂) gas is formed ✓ <i>Could be from equation with</i> CO ₂ (g)	1	increases and reason required for mark ASSUME gas is CO ₂ unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. H ₂) ALLOW more gas
	(a)	(iii)	entropy decreases AND 3 mol O_2 form 2 mol O_3 OR $3O_2 \rightarrow 2O_3$ OR 3 mol gas form 2 mol gas \checkmark	1	decreases and reason required for mark For mol, ALLOW molecules ALLOW multiples, e.g. $1\frac{1}{2}O_2 \rightarrow O_3$; $O_2 + \frac{1}{2}O_2 \rightarrow O_3$ ALLOW $O_2 + O \rightarrow O_3$ Note: DO NOT ALLOW 2 mol gas forms 1 mol gas unless linked to $O_2 + O \rightarrow O_3$ IGNORE reaction forms fewer moles/molecules

2 (b)	CARE: responses involve changes of negative values		FULL ANNOTATIONS MUST BE USED
	Feasibility AND ∆ <i>G</i> Reaction becomes/is less feasible/not feasible		As alternative for 'less feasible' ALLOW 'less spontaneous'
	AND ∆G increases		OR a comment that implies 'reaction no longer take place'
	OR $\triangle G$ becomes/is less negative/more positive OR $\triangle G > 0$ OR $\triangle H - T \triangle S > 0$		ALLOW for ΔG increases $\Delta G < 0$ only at low T
	OR $\Delta H - T\Delta S$ becomes/is less negative/more positive OR $\Delta H > T\Delta S \checkmark$		DO NOT ALLOW $T \Delta S > \Delta H$ (comparison wrong way round)
	OR $T \Delta S$ becomes/is more negative than $\Delta H \checkmark$		NOTE: Last statement automatically scores 2nd mark ALSO
			IGNORE significance IGNORE magnitude for 1st marking point
	 Effect on <i>T</i> ∆S		
	$T\Delta S$ becomes more negative OR $T\Delta S$ decreases OR $-T\Delta S$ becomes more positive OR $-T\Delta S$ increases OR magnitude of $T\Delta S$ increases OR $T\Delta S$ increases	2	DO NOT ALLOW <i>T</i> ∆ <i>S</i> increases IGNORE significance
			APPROACH BASED ON TOTAL ENTROPY: Feasibility with increasing temperature Reaction becomes less feasible/not feasible AND
			$\Delta S - \Delta H/T \text{ OR } \Delta S_{\text{total}} \text{ decreases/ less positive } \checkmark$ Effect on $\Delta H/T$ $\Delta H/T \text{ is less negative OR } \Delta H/T \text{ increases}$
			OR $-\Delta H/T$ decreases OR magnitude of $\Delta H/T$ decreases \checkmark

2	(c)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 75.962 OR 75.96 OR 76.0 OR 76, award 2 marks		
			$\Delta S = (33 + 3 \times 189) - (76 + 3 \times 131)$ = (+)131 (J K ⁻¹ mol ⁻¹) \checkmark		DO NOT ALLOW –131
			$\Delta G = 115 - (298 \times 0.131)$ = (+) 75.962 OR 75.96 OR 76.0 OR 76 (kJ K ⁻¹ mol ⁻¹) \checkmark	2	ALLOW ECF from incorrect calculated value of ΔS
2	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 878 OR 877.9 OR 877.86, award 2 marks (Minimum temperature when) $\Delta G = 0$ OR $\Delta H - T\Delta S = 0$		ALLOW total entropy statement: $\Delta S(\text{total}) = 0 \text{ OR } \Delta S(\text{total}) > 0$
			OR (For feasibility) $\Delta G = 0$ OR $\Delta G < 0$ OR $\Delta H - T\Delta S < 0$ OR $T = \frac{\Box H}{\Box S} \checkmark$		ALLOW ECF from incorrect calculated value of ΔS from 2(c)(i) ALLOW 878 up to calculator value of 877.862595 correctly rounded
			$T = \frac{115}{0.131} = 878 \text{ K} \checkmark$	2	
	•	-	Total	9	

C	Question		er	Marks	Guidance	
3	(a)	(i) FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 218, award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible. Note that ALL 4 S values must be used for ECF		
			$\begin{array}{rl} -256 = (\ 6 \times 205) &+ & S(C_6H_{12}O_6) &- & (6 \times 214 \ + \ 6 \times 70) \\ \textbf{OR} & S(C_6H_{12}O_6) &= & -256 \ - & (\ 6 \times 205) \ + & (6 \times 214 \ + \ 6 \times 70) \\ \textbf{OR} & -256 \ + \ 474 \ \checkmark \\ &= & 218 \ (J \ K^{-1} \ mol^{-1}) \ \checkmark \end{array}$		ALLOW 1 mark for –218 ALLOW 1 mark for +730 (<i>products – reactants</i>) Note: –3190 for simple addition of products + reactants scores zero marks	
		(ii)	$\Delta G = +2879 - 298 \times -0.256 \checkmark$ = (+)2955 (kJ mol ⁻¹) \scrimes	2	ALLOW 3 SF: 2960 to calculator value of 2955.288Award 1 mark for the following:• $\Delta G = 2890$ to calculator value of 2885.4 $25 ^{\circ}C$ used rather than 298 K:• $\Delta G = 79200$ to calculator value of 79167 ΔS not converted from J K ⁻¹ mol ⁻¹ to kJ K ⁻¹ mol ⁻¹ • expressions with one transcription error: e.g. +2897 instead of +2879; 0.265 instead of 0.256• $\Delta G = 2814.036$ use of 218 rather than -256• Use of 'answer to (a)(i)'/1000 (by ECF)	
		(iii)	ΔH is positive OR $\Delta H > 0$ AND ΔS is negative OR $T\Delta S$ is negative OR $\Delta S < 0$ OR $T\Delta S < 0$ AND ΔG will always be positive OR $\Delta G > 0 \checkmark$	1	ALLOW ΔH is endothermic for ΔH is +ve ALLOW ΔG will never be less than 0 DO NOT ALLOW S or H i.e. change in entropy, ΔS and change in enthalpy ΔH are essential	

Question	er	Marks	Guidance
(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.12×10^{17} g, award 2 marks	2	
	amount of CO ₂ removed = $3.4 \times 10^{18} \times 6 / 2879$ OR 7.09×10^{15} (mol) \checkmark		ALLOW 2 SF (7.1 \times 10 ¹⁵ (mol)) up to calculator value of 7.085793678, correctly rounded
	mass of $CO_2 = 44.0 \times 7.09 \times 10^{15} = 3.12 \times 10^{17} \text{ g} \checkmark$		ALLOW 2 SF $(3.1 \times 10^{17} \text{ g})$ up to calculator value, correctly rounded Correct units required for 2nd mark e.g. 3.12×10^{14} kg; 3.12×10^{11} tonne
			ALLOW 1 mark for 3.1×10^{17} with no unit ALLOW ECF from incorrectly calculated amount of CO ₂ provided that both 3.4×10^{18} AND 2879 have been used
			e.g. Omission of x 6 gives 1.181 x 10^{15} mol CO ₂ and 5.196 x 10^{16} g CO ₂
	Total	7	

C	uesti	on	Answer	Marks	Guidance
4	(a)	(i)			ANNOTATIONS MUST BE USED Quality of Written Communication:
			<i>initial rates data:</i> From Experiment 1 to Experiment 2 AND		Changes MUST be linked to Experiment numbers in writing (<i>Could be described unambiguously</i>) IGNORE annotations in the table
			[NO ₂] x 1.5, rate x 1.5 ✓		For 2nd condition, ALLOW 'when [NO ₂] increases by half, rate increases by half
			1st order with respect to NO ₂ \checkmark		NOTE: Orders may be identified within a rate equation
			From Experiment 2 to Experiment 3 AND [O ₃] is doubled, rate x 2 \checkmark 1st order with respect to O ₃ \checkmark rate equation and rate constant: rate = k[NO ₂] [O ₃] \checkmark $k = \frac{rate}{[NO_2][O_3]} \text{ OR } \frac{4.80 \times 10^{-8}}{0.00150 \times 0.00250} \checkmark$		ALLOW: working from any of the Experiments : All give the same calculated answer 0.0128 subsumes previous rearrangement mark ALLOW: mol ⁻¹ dm ³ s ⁻¹ ✓
			$= 0.0128 \checkmark dm^3 mol^{-1} s^{-1} \checkmark$	8	DO NOT ALLOW 0.013 over-rounding
					ALLOW ECF from inverted k expression: $k = \frac{[NO_2][O_3]}{rate}$: $k = 78.125 \checkmark$ ALLOW 3 SF or more NOTE units must be from rate equation \checkmark

0	Questio	on	Answer	Marks	Guidance
4	(a)	(ii)	step 1: $NO_2 + O_3$ LHS of step one \checkmark $\longrightarrow NO_3 + O_2$ step 2: $NO_2 + NO_3 \longrightarrow N_2O_5$ rest of equations for step 1 AND step 2 \checkmark CHECK that each equation is balancedCARE: Step 1 AND Step 2 must add up to give overall equationIn Step 2, IGNORE extra species shown on both sides, e.g. $NO_2 + NO_3 + O_2 \longrightarrow N_2O_5 + O_2$ Step 2 can only gain a mark when Step 1 is correct	2	State symbols NOT required For 'rest of equations', ALLOW other combinations that together give the overall equation, e.g.: $\longrightarrow NO_5$ $NO_2 + NO_5 \longrightarrow N_2O_5 + O_2$ e.g.: $\longrightarrow NO + 2O_2$ $NO + NO_2 + O_2 \longrightarrow N_2O_5$ DO NOT ALLOW use of algebraic species, e.g. X
	(b)	(i)	3 gaseous moles \longrightarrow 2 gaseous moles \checkmark Less randomness OR becomes more ordered \checkmark	2	 ALLOW products have fewer gaseous moles ORA ALLOW 'molecules' instead of 'moles' ALLOW fewer ways of distributing energy OR fewer degrees of freedom OR fewer ways to arrange
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -148 award 3 marks $\Delta G = \Delta H - T\Delta S \checkmark$ $= -198 - (298 \text{ x} - 168/1000) \checkmark$ $= -148 \text{ (kJ mol}^{-1}) \checkmark$	3	IF there is an alternative answer, check calculator value and working for intermediate marks by ECF 2nd mark subsumes 1st mark for $\Delta G = \Delta H - T\Delta S$ ALLOW –148 to calculator value of –147.936 ALLOW for 2 marks: 49866 (kJ mol ⁻¹): not converting ΔS from J to kJ (no ÷ 1000) –193.8 (kJ mol ⁻¹) use of 25 instead of 298

Questio	n	Answer	Marks	Guidance
4 (b)	(iii)	CARE: responses involve changes of negative values		ANNOTATIONS MUST BE USED
		Feasibility with increasing temperature Reaction becomes less feasible/not feasible AND ΔG increases OR ΔG becomes less negative OR $\Delta G = 0$ OR $\Delta G > 0$ OR ΔG is positive OR ΔG approaches zero \checkmark ***IF a candidate makes a correct statement about the link between ΔG and feasibility, IGNORE an incorrect ΔH and $T\Delta S$ relationship IF there is no ΔG statement, then mark any ΔH and $T\Delta S$ relationship in line with the mark scheme		As alternative for 'not feasible' ALLOW 'not spontaneous' OR a comment that implies 'reaction does not take place' ALLOW for ΔG increases $\Delta H = T\Delta S \text{ OR } \Delta H > T\Delta S \text{ OR } \Delta H - T\Delta S$ is positive OR $T\Delta S$ becomes more significant than ΔH OR $T\Delta S$ becomes the same as ΔH OR $T\Delta S$ becomes more negative than ΔH NOTE Last statement will also score 2nd mark
		Effect on $T\Delta S$ $T\Delta S$ becomes more negative OR $T\Delta S$ decreases OR $-T\Delta S$ increases OR magnitude of $T\Delta S$ increases \checkmark	2	DO NOT ALLOW <i>T</i> ∆ <i>S</i> increases
				$\begin{array}{c} \hline \\ \textbf{APPROACH BASED ON TOTAL ENTROPY:} \\ \hline \textbf{Feasibility with increasing temperature} \\ \hline \textbf{Reaction becomes less feasible/not feasible} \\ \hline \textbf{AND} \\ \hline \Delta S - \Delta H/T \ \textbf{OR} \ \Delta S_{\text{total}} \ \text{decreases/ less positive} \\ \hline \textbf{OR} \ \Delta S \ \text{outweighs/ is less significant than } \Delta H/T \ \checkmark \\ \hline \textbf{Effect on } \Delta H/T \\ \hline \Delta H/T \ \text{is less negative } \textbf{OR} \ \Delta H/T \ \text{increases} \\ \hline \textbf{OR} \ -\Delta H/T \ \text{decreases} \\ \hline \textbf{OR} \ \text{magnitude of } \Delta H/T \ \text{decreases} \ \checkmark \\ \end{array}$
		Total	17	